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The Kosterlitz-Thouless phase in a hierarchical model 

J Dimock 
Department of Mathematics, SUNY at Buffalo, Buffalo, NY 14214, USA 

Received 4 July 1989 

Abstract. We use renormalisation group methods to study the long-distance behaviour of 
hierarchical (cos cp)* lattice field theories in the Kosterlitz-Thouless phase. 

1. Introduction 

We consider (cos ( P ) ~  (sine-Gordon) field theories on a lattice. For the lattice we take 
the two-dimensional toroidal lattice A = A N  = (Z/LNiZ)'  with fixed integer L 2 2. The 
free field theory on A is given by the Gaussian measure p on 88" with covariance 
p(-A)-' where p > O  and A is the lattice Laplacian. For f€R* we have 

(1.1) 

Actually (S, (-A)-'f) is well defined only if C x f ( x )  = O ;  otherwise we interpret it as 
CD, and the right-hand side of (1.1) as zero. (One can think of using ( - A + & '  as the 
covariance and taking the limit 6 + 0.) 

e i ( d )  d = exp[ - f P ( S ,  (-A)-'f)I. 

For the full theory we consider the measure 

dP((P) (1.2) e-V' 'P '  

where 

V ( q )  = 2 z  c cos p(x)  
x t A  

(1.3) 

with z 2 0. 
As is well known, this model can be thought of as describing a classical lattice gas 

of charged particles with Coulomb interaction (-A)-' and an overall neutrality condi- 
tion. For example, by expanding the exponential one has 

(1.4) 
41 3 . , . 3 4" 

where the sum is over x i  E A, q1 = *1 with the restriction C q, = 0. This is the partition 
function for the gas in the grand canonical ensemble with activity z and temperature 
p- ' .  

A general discussion of results for the model can be found in [l]. 
For small z there are two distinct phases (and possibly many more [2]) depending 

on p. For small p (high temperature) there is a plasma phase. In this phase correlations 
show an exponential decay corresponding to a Debye screening phenomena. This has 
been rigorously studied by Brydges and Federbush [3,4]. 
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On the other hand, for large /3 (low temperature) there is a phase in which the 
charged particles form dipoles. In this phase correlations show a power-law decay 
and there is no Debye screening. The phase was discovered by Kosterlitz and Thouless 
[5]. A proof that this Kosterlitz-Thouless phase exists was given by Frohlich and 
Spencer [6]. 

Our interest is in extending the results of Frohlich and Spencer by giving a more 
systematic renormalisation group analysis and obtaining more detailed information 
on the decay of correlations. Formal renormalisation group treatments have appeared 
in the literature, e.g. [7]. A rigorous version could follow the lines laid down by 
Gawedzki and Kupiainen who consider (among other things) a dipole gas [8-lo]. 
However, the extension of their methods to this problem is not at all straightforward. 
So here we are content to start with a renormalisation group analysis for a simpler 
hierarchical version of the model. The study of hierarchical models by renormalisation 
group methods has also been developed by Gawedzki and Kupiainen [9-121, and has 
proved to be a fruitful line of attack. 

For the hierarchical model there is a natural sequence of effective measures for 
increasing length scales. Our basic result is that they become increasingly Gaussian, 
i.e. we have infrared asymptotic freedom (theorem 1). This determines the long-distance 
behaviour of the theory. As an illustration, we consider a certain fractional charge 
correlation function %(x, y ) .  For this function we obtain the infinite-volume limit 
N + CD and then find the exact asymptotic behaviour as lx - y /  +OD (theorem 2). 

Our methods generally are those of Gawedzki and Kupiainen. The main difference 
is that we systematically use Fourier expansions rather than Taylor expansions to 
analyse the effective interactions. 

2. The model and the renormalisation group 

The hierarchical approximation consists in replacing the covariance .L?( - A ) - ’  of the 
Gaussian measure by PC where 

C ( X ,  Y )  = N -  K ( x ,  Y )  ~ ( x ,  y )  = inf{/c E Z, /c 2 0: [ L - ~ x ]  = [ L - ~ ~ I }  (2.1) 

with [ ] denoting the integral part. 
This covariance preserves the essential features of the problem. With an I“ metric 

on A we have K(x, y )  2 log,lx - y l ,  and for most x, y, K(x, y )  is close to logJx - y l .  
Thus - K ( x ,  y )  has the same type of long-distance behaviour as the inverse Laplacian. 
Note that for E’= 0 we have ( J ;  C’) = ( J ;  ( - K ) f )  so it is - K  that is relevant. On the 
other hand, if E f t ’  0 then ( J ;  C f )  is infinite (in the limit N + a), just as for the original 
problem. 

The hierarchical model can be realised by writing 
N-1 

p(x) = Z k ( [ L - k - ’ X ] )  
k = O  

where { Z k (  U)} for 0 s k S N - 1 and U E R ’ ~ - 1  is a family of independent Gaussian 
random variables with mean zero and covariance p. Indeed, if d p ( Z k )  denotes the 
measure on R.’y-k-~ with covariance p and 

(2.3) 
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we find that 

The renormalisation group transformations for this model consists of successively 
integrating out z', z', . . . in e-"'+') dp(cp). We define pn on ( W A ~ - "  inductively by 

- V ( a l  Po(cp) = e  

where [cp = 01 is the numerator with cp = 0. Then we find that the effective measure 
after n steps is 

(1 pdcp) dpL(Zo). . . dr(Z.')) dp(cp") = p,( (o")  dp(cp") (2.6) 

where: 

(2.7) 
k = n  k = n  

We will not find it necessary or useful to introduce effective potentials V,, so pn = e-',$. 
Next we claim that pn has a product structure of the form: 

P n ( c p ) =  n Tn(cp(x)) .  (2.8) 
X E  

Here Tn is a function on R defined by 
To( cp) = e-2z  cos a 

Tn+,(cp) = 1 [Tn(cp+Z)lm dp(Z)/[cp = O l  (2.9) 

where m = L2 and d p  is Gaussian with covariance P. This is immediate for n = 0. 
Assuming it is true for n, we have 

Pnfcp([L- ' . I)+z"([L-~.1)) = [Tn((p(uf+Zn(u) ) lm (2.10) 
U €  \&- , , - ,  

and substituting this into (2.5) establishes (2.8) for n + 1. 
Since Tn is periodic with period 2n, it has a Fourier series: 

Theorem 1 .  Let p be sufficiently large and z Se- '  and P' = P/6 ,  then for n = 0, 1,2, . . . 

(2.12) 

Remark. As a consequence, Tn(cp) converges to 1 as n + CO exponentially fast and 
uniformly in cp. In this sense, p,(cp) converges to 1. This is the infrared asymptotic 
freedom. 
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Boo$ We first establish the result for n = 0. For IIm cpI s p we have 12z cos ( 0 1  C 22 e ' s  
2, and so 1 To( cp)i  s e'. Then in 

(2.13) 

we may use the periodicity to deform the contour by cp + cp - ip for p > 0 and cp + cp + $3 
for p < 0. This gives the bound I to( p)I S e-p1p1t2 s for p # 0. For p = 0 we keep 
cp real. Then 122 cos cpI S e-p, hence lTo(cp) - 11 s e-@+'  s e-' , and hence 1 r,(O) - 1 I s 
e-'. 

Now we show n implies n + 1. First consider the un-normalised quantity 

T:+,(cp)= j [Tn(cp+z)lm dlL(Z). (2.14) 

So Tn+l(cp) = T:+,(cp)/ T:+l(0). Using IelPZ d p ( 2 )  = e-pP' 2 ,  we find for the Fourier 
coefficients t:t of T:+l : 

(2.15) 

(2.16) 

To see this, note that we always have lpl S 1, lpJ. We divide the sum into a region 
with Ipl G C lp,l S 2 /p /  and a region with 2/pl < E ,  Ip,l. The first region has volume less 
than O(l)lpl", and hence the bound holds. For the second region we may extract a 
factor e-a1p1 before estimating 2 It, exp(-alp,l/2) s O( 1 j. 

We use this bound in (2.15) with Itn(p)ls2e- '" '"P'P . We also use p 2 2  IpJ, and 
hence exp(-pp2/2) S exp(-3p'lp)). A factor exp(-p'/pl) dominates (1 + IpI"), and so 

I t :+ l (p ) I sO( l )  P '  (2.17) 
which we will use for p # 0. 

For p = 0, we use 

(2.18) 

where the primes indicates that at least one p ,  # 0. For this p ,  we may extract a factor 
from our bound on t , ( p , ) ,  and proceed as before to get If:TI(0) - t , (O)" l  s 

(2.19) 

Ip / 2  

. Since also I t , , ( 0 ) " - l l ~ O ( l ) e - ' " " ' p  , we conclude that o(lj e - l n + l ) p  2 

ir:+l(o) - 11 s o ( 1 )  e-'"+"@ '. 
Now we estimate for p # 0 

t n + , ( p ) =  t L , ( p )  1 t f i+,(p)  . (2.20) 

)z$, and thus, by (2.171, 
( P  ) - I  

By (2.17) and (2.19), the denominator is I+O(e-""" 
[ t n + l ( p ) l s o ( l j  e - ( n + 3 ) p  P s e  - ( r i + Z i B  P , as required. 

For p = 0 we have 
- I  

t f l T l ( 0 )  - 1 = - c rf-1 (PI($ t:&)) 
P * O  

By (2.17) we get lt,,+l(0) - 11 s O( 1) . , as required. 

(2.21) 
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3. Correlation functions 

For the correlation functions we consider the expected values of e""sf' with x f =  0. 
We confine ourselves to the simplest choice f =  y(S, - S? ), where 6, is a S function at 
x E A. Thus we study 

r. 

In the original model this has the interpretation of measuring the correlation between 
a charge + y  at x and a charge -y at y. We will assume 0 s  y <+, so these would be 
fractional charges (cf [ 11). 

With no potential ( V = 0) we have 

%(x, y )  = exp(-Py2K (x, Y ) )  (3.2) 

independent ofthe volume. Thus %(x, y )  is approximately / x  - y ( - "  with a = Py2/log L. 
Our goal is to show that %(x, y )  has the same behaviour to leading order as (x  - y (  + a. 

We analyse %(x, y )  by successively integrating out the short-distance modes. This 
takes one form for the first K = K (x, y )  steps, and another form thereafter. 

We claim that for n = 0, 1 , .  . . , K 

%(x, y )  = I ~ ~ ( ~ " ( [ ~ - " ~ I ) ) ~ ~ ( ~ " ( [ ~ - ~ ~ l ) ) p n ( ~ ~ )  dp (V") / [F=  11 (3.3) 

where FZ are functions on R defined inductively by 

F,'(cp) = e*'r" 

(3.4) 
F Z + l ( q ) = l  FZ(v+Z)(Tn(cp+Z))" dp(Z)/TX+I(V). 

This is the definition for n = O .  Assuming it is true for n, we insert cp" = 
cp"+'([L-'.])+Z"(L-'.]) and dp(cpn)=dp(cpn+')  d p ( Z " )  and (2.10) into (3.3). Now 
d p ( Z " ) = I I U  dp(Z"(u) )  andintheintegraloverZ"(u) wemay identify T:+l(cp"*'(u)) 
except when U = [L-("'l)x] or U = [L-("+')y], when we get respectively F:+l(cp"+'(u)) 
T;+, (cp"+'(u) ) .  Dividing by IIuT:+l(0) changes the T:+' to T,,,', and identifying 
IIuTn+l(cp"i'(u))=p,+l(cp"f') gives the result for n +  1. 

In the following it will be convenient to define R: by 

F:(cp) =e*'Y'PRz(cp) (3.5) 

and then 

(3.7) 
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Here G, is defined by 

G,(cp) = G ( c p ) & ( c p )  = R+,(cp)R,(cp) 

Gn+l(cp)= G,(cp+Z)(T,(cp+Z))"'  d ~ ( Z ) / T ; + ~ ( c p ) .  
(3.8) 

This is true for n = K by (3.3) and the proof for all n follows as before. Note that 
for n = N there are no variables left and we have just %(x, y )  = Gh (0). 

Note also that R t  and G, are periodic with period 27r ( F z  was not). Thus we 
may study their behaviour through their Fourier coefficients denoted r:( p ) ,  g,( p ) .  
One can show that r : ( p )  is real, and that r i ( p )  = r ; ( - p ) .  

The estimates to follow will involve the quantity 

6 = exp( -py2 /2) .  (3.9) 

We consider y fixed with 0 s y < 5, and let 

(Y = (1 - 2 y ) p / 1 8  (3.10) 

we always assume that p (and hence a )  is sufficiently large. 

Lemma 1. For n = 0, 1, . . . , K :  

(a) define c, by r z ( 0 )  = 6 " (  1 + c,,); then 
- i n + l ) o .  IC, - C , - ~ I  s e 

(b) for p # O  
I r : ( p ) I <  . 6" e - ( n + l ) 4 P l  

ProoJ: Since ro( p )  = 
C - ~  = 0). We assume they are true up to n and prove them for n + 1. 

we have co = 0 and the bounds are true for n = 0 (by convention 

Define 

S ( P )  = R:+l(cp)- 6r:(0)  (3.11) 

Then the Fourier coefficients satisfy o( p )  = rz+ l (p )  for p f 0 and o(0) = S " f l ( ~ n + ,  - c,,). 
Thus we must show that 

(3.12) 

Next we remove the denominators defining S*(cp) = S(cp)T;+,(cp), so that 

S*(cp) = e*iyZR~(cp+Z)(T, (cp+Z))m dp(Z)-6rz(O)T?+,(cp). (3.13) 

This has Fourier coefficients 

I 
(3.14) 

(3.15) 
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(since p'" 

f P ( p * y ) 2 3 : '  2 P ( l p l ( l - 2 ~ ) +  ~ ~ ) 3 3 & l p l + P ~ ' / 2 .  (3.16) 

These combine to give the claimed bound for the first term in a*(p). For the second 
term we use (2.17) to get the same bound. 

Indeed by l r z ( q ) 5 2 S n  e- '"+l 'a 'y '  (since Ic,,lG 1) and I t , , ( p ) l .  < 2 e - 3 a i n + l ) l P /  

3 a )  and (2.16), the term in parentheses is O(l)S"e-"""'. For the exponent we use 

For p = 0 there is a cancellation, and we have 

(3.17) 

4 A z P , = o  

We repeat the bound, but use the fact that at least one p ,  # 0 to extract a factor 
Thus we have 

Ia*(o)l c o ( ~ ) s " + '  e-'"'"+'). (3.18) 

Now consider S((p)=S*(cp)T:+,(cp) in the region IIm (p lC(n+2)a .  By (3.15) and 
(3.18) we have that S*((p) is analytic in the region and bounded by O(l)S"+'  e-". By 
(2.17) and (2.19), 1 - T:+,(cp) is also analytic and bounded by i. Thus S(cp) is analytic 
and bounded by 0(1)6"+ '  e-a. By a contour deformation argument we conclude that 
for p z 0, a ( p ) s  (0(1)6"+' e ~ w " e - ( n + z ) a ' p '  ) and this implies (3.12) for p # 0. 

. Hence S(cp) has a 
bound of the same form, and so does a(0)  and this gives (3.12) for p = O .  

Lemma 2. For n = K, K + 1 , .  . . , N and p # 0 

If we keep (p real we can bound S*(cp) by 0(1)6"+'  

Proof: First for n = K we have 

(3.19) 

(3.20) 

Then Jr:(q)l C 2 S K  e- (K+ ' )a 'q  and (2.16) give the bound. 
Now we show n implies n + 1. We define 

S (  (O 1 = Gn + I  ( CP 1 - gn (0 ) (3.21) 

the Fourier coefficients are a(p)  = g n t l ( p )  for p f 0, so it suffices to prove 

(3.22) I a ( p ) l  8 Z K  e - ( n + 2 1 a I ~ l  2 

Next let S*(cp) = S(cp)T?+,((p) so that 

s*(P)=[  Gn(p+Z) (Tn (q+Z) ) "  dp(Z)-gn(O)T:+l(p)- (3.23) 

This function has Fourier coefficients: 

(3.24) 

(The q = O  term was canceled by gI,(O)f:+,(p).) Following the analysis of (3.15)-(3.18) 
with minor modifications, we get la*( p)J  c O( 1)S2K e-'n+3)a1p1'2 and 16*(O) )s  
O ( l ) S Z K  Then S*(cp) is analytic in l I m c p / C ( n + 2 ) ~ ~ / 2  and bc lnded by 
0(1)S2K e-"'2, hence S(cp) = S*(cp)/ T:+,(cp) is also. Therefore Ia(p)I s 
(o( 1 ) 6 2 K  e-a/2)(e-in+2)alpl/2 ); so (3.22) follows. 
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Now can control the infinite-volume limit and asymptotic behaviour for % ( x ,  y ) .  

Theorem 2. 

(a) %(x, y )  = lim %(x, y )  and c, = lim c, exist. 
N - x  n - x  

(3.25) 

(3.26) 

and the only N dependence is in the upper limit of the sum. By lemma 2 we have 

IG,(Z)-G,(O)I= 1 c ( e i p z - l ) g n ( p ) l  <-(1)62K e - ( n + l ) u / ?  . (3.27) 
P f O  

This in turn gives 

(3.28) 

Hencethe N-,mlimitin(3.26) exists. Thelimitforc, followsfromc, = x i = ,  (ck - c ~ - ~ )  
and lemma l ( a ) .  Note also that / c x l  s eCU, and so is small. 

s0(1)62K e - ( n + l l u , 2  

(b) Since go(x, y )  = = we have 

As / x - y l + c c ,  we have K +E, and the sum converges to zero by (3.28). For the 
remaining term we use lemma l (b )  to get 

lim K K R ; ( O ) =  lim ( l + c K ) +  1 F K r ; ( p )  
K - x  ( P + O  K -x  

and hence, since G K ( 0 )  = RI-,(O)R,(O), we obtain 

Iim 6 - ' K ~ K  (0) = (1 + cx)'. 
K - x  

Note  added. After this paper was completed I discovered the paper by Benefatto ef al [ 131 i n  which very 
similar results were obtained by Mayer expansion techniques. The present method is quite different and 
somewhat simpler. 
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